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The Gibbsian relation is of fundamental importance to the thermodynamics 
of nonequilibrium systems. In this paper, we shall present an analytical 
derivation and several generalizations of this relation for dilute, nonequili- 
brium and certain highly nonequilibrium, systems. Our analysis will be 
independent of the collision dynamics, because it will be based on the general 
kinetic equation with arbitrary collision integrals. Consequently, our analysis 
can provide a thermodynamic derivation and several generalizations of the 
Gibbsian relation. Our distribution functions can also admit some arbitrary, 
nonequilibrium and highly nonequilibrium, forms. With the help of the 
generalized Gibbsian relation and a fundamental axiom to be postulated, 
the entropy production rates and the generalized forces and fluxes will be 
studied for our highly nonequilibrium systems. The second law of thermo- 
dynamics will be postulated and verified in specific cases. Onsager's reciprocity 
relations will be discussed. 

KEY WORDS: Nonequilibrium thermodynamics; kinetic theory; Gibbsian 
relation; dilute systems; analytical generalization; entropy production. 

1. I N T R O D U C T I O N  A N D  D E F I N I T I O N S  

The  G i b b s i a n  r e l a t i on  fo r  a mul t i spec ies  f luid sys tem is 

T Ds~Ot = (D~/Dt) -k p[D(1/p)/Dt] - -  ~ I~i Dx , /Dt  
g 

(1) 

1 Research Department, Grumman Aerospace Corporation, Bethpage, New York, and 
Courant Institute of Mathematical Sciences, New York University, New York, New 
York. 

1 
�9 1972 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 

8~2/51d~-I 



2 James T. Yen 

Here, D/Dt will denote a material-derivative; s, ~, p, and p will represent 
respectively the specific entropy, the specific internal energy, the pressure, and 
the density of the system; and b~i and xi will denote the chemical potential and 
the concentration of the ith species. 

This relation is of fundamental importance to the thermodynamics 
of nonequilibrium systems. Together with the first and the second laws of 
thermodynamics and Onsager's reciprocity relation it forms the foundation 
of this important area of thermodynamics. (1,~ 

For nonequilibrium systems in general, the Gibbsian relation is usually 
assumed to be valid, since it is valid for equilibrium systems undergoing 
reversible processes. So far, the validity of this assumption, in the words 
of DeGroot and Mazur (Ref. 1, p. 23), "can only be justified by virtue of the 
validity of the conclusions derived from it." Therefore, an analytical and 
thermodynamic derivation of this relation is needed in order to substantiate 
this assumption and to define its region of validity for nonequilibrium systems, 
and then in order to discover the generalizations of this relation when the 
systems become highly nonequilibrium. 

Analytical derivations of the Gibbsian relation have been presented by 
various investigators (1-5) for dilute nonequilibrium systems, based on the 
Boltzmann equation, which is valid only for binary and elastic collisions. 
Hence, these derivations are not thermodynamic derivations because they 
are dependent upon the collision dynamics. For example, their validity for 
inelastic and multibody collisions is yet to be established. The latter types 
of collisions are of prime importance in chemical reactions involving dilute 
systems; in such reactions, several particles may come together and 
experience a binary or a multibody inelastic collision. 

Another derivation of the Gibbsian relation also has been presented by 
Coleman and co-workers (6,v) based on the continuum approach. This 
derivation is phenomenological, and not analytical, in nature; it is a thermo- 
dynamic one, however, since it is independent of the collision dynamics. It 
is also restricted to nonequilibrium systems. 

Summarizing, we still do not have a derivation of the Gibbsian relation 
which is both analytical and thermodynamic, and which is valid for 
nonequilibrium as well as highly nonequilibrium systems, which are frequently 
encountered in practice. As a result, we do not know what should be the form 
of the Gibbsian relation when the systems become highly nonequilibrium. 

Let us set forth the following definitions. By systems, we shall mean 
multispecies gaseous systems, where, for the ith species, we have the particle- 
velocity distribution function f~, the local species temperature T~, and the 
local species mean velocity u~. By equilibrium systems, we mean systems that 
are in their thermostatic equilibria and will not undergo any spontaneous 
changes. For a system in local thermodynamic equilibrium (LTE), its species 
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are locally in equilibrium with each other such that both 7~ and u~ are locally 
the same for all species, and that everyf~ is locally Maxwellian. An important 
feature of an LTE system is, of course, that its T.~ and u~ can still change with 
time and space. Hence, at each instant, it is already not in thermostatic 
equilibrium. 

Adopting usual terminology, we shall call a system nonequilibrium 
(highly nonequilibrium) if it is close to (far away from) its LTE. Two criteria 
may be employed for this classification: how far the species of the system 
are nonequilibrial to each other, and how the system as a whole deviates 
from its LTE; for example, if it has large spatial or temporal gradients. 

Let us write 

f i  = fi(~ + ~) ,  with [ ~ I < 1 (2) 

Then, for a nonequilibrium system, its species should be nearly in local 
equilibrium with each other and its gradients should be small in magnitude. 
Thus, it is required that the q~ are small quantities; the f~01 are locally 
Maxwellian; and both T~ and u~ are locally the same for all species. 

We emphasize that in a nonequilibrium system, both Ti and ur do not 
vary much from one species to the other, although they can change with 
time and space. If  we introduce the local temperature T, velocity u, and sonic 
velocity a for the mean fluid system, then both 

[u~ - -  u l/a ~ 1 (3a) 

and 

I r~ - -  T I / T ~  1 (3b) 

should be satisfied. Thus, every one of the diffusion velocities 

wl = ui -- u (4) 

has to be subsonic even though u may become supersonic, indicating small 
effects of diffusion. 

Having defined nonequilibrium systems according to the usual conven- 
tion, we realize that there are many varieties of hightly nonequilibrium systems. 
In particular, there are systems for which it is not possible to define the species 
temperatures T~ and/or the species entropies s~. A new approach based on 
the continuum theory has been proposed recently by Meixner cs) for studying 
thermodynamics of systems without defining the entropy; his work is there- 
for not concerned with the Gibbsian relation. Another type of highly non- 
equilibrium system has been studied by Truesdell. ~9) He has investigated, 
based on a continuum approach, nonequilibrium and highly nonequilibrium 
single-species solid systems which have fading memories. 
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We shall confine ourselves to two broad types of highly nonequilibrium 
gaseous systems where it is possible to define both T~ and si �9 For both types, 
the species will be allowed to become highly nonequilibrial to each other, 
but, the gradients of the state variables will still be restricted to be small in 
magnitude. 

For our first type, called Type I, the distribution functions f~ are again 
restricted to be nearly locally Maxwellian, but with no restriction on T~ or 
on ui such that T~ and u~ may vary greatly from one species to the other, and 
the system can become highly nonequilibrium. In other works, both 
conditions (3a) and (3b) can be relaxed. Consequently, the diffusion velocities 
w~ can become supersonic even when the fluid velocity u remains subsonic, 
as discussed by Yen, c1~ indicating very large and generally nonlinear effects 
of diffusion. The dynamics and the kinetic theory of such systems have been 
studied by different authors, for example, Refs. 10-19. However, due to its 
nonlinearity, the thermodynamics of such systems have not been investigated 
so far. It is obvious that an analytical procedure which is independent of the 
collision dynamics is necessary for such investigations; the phenomenological 
and semi empirical procedures employed in the usual themodynamic studies 
are inadequate for our purpose. 

The establishment of the desired analytical procedure will be carried out 
in Section 2. There, as an initial step, we shall consider only a particular kind 
of Type I system, by making the restriction that each system have negligible 
internal degrees of freedom and that the u~ be nearly the same for all of its 
species, although the Ti can still vary greatly from one species to another, 
and the small deviations q~ can still assume arbitrary forms. 

For our second type, called Type II, to be treated in Section 3, the 
Maxwellian requirement is removed such that the f~0) can assume arbitrary 
forms. The small deviations q~i can also admit arbitrary forms, to cover a 
large variety of highly nonequilibrium systems. In order to obtain detailed 
results, however, we need to adopt mathematically suitable non-Maxwellian 
forms, and we need to extend the analysis of Section 2. The dynamics and 
the kinetic theory, but not the thermodynamics, of some specific highly 
non-Maxwellian systems have been studied, for example, in Ref. 19. 

Our analysis, to be presented in Sections 2 and 3, will be based on the 
general kinetic equation: 

~f~ ~ (~fdet) 4: ~ �9 (~ /0x)  § (~/m~)  �9 (~f~/~g~) = ~ (5) 

The collision integral denoted by ~f~ is entirely arbitrary in form and will 
represent the sum of the rates of all kinds of collisions--elastic and inelastic, 
binary and multibody--occurring among all /-type particles, and between 
the ith species and all other species. We have employed standard notation 
in Eq. (5), with ~ denoting the force acting on an/-type particle having mass 
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m~, velocity g~, and velocity distribution function f~. Since the collision 
integral is entirely arbitrary, the general kinetic equation (5) is independent 
of the collision dynamics; thus, our analysis can qualify as a thermodynamic 
analysis. 

In order to derive the Gibbsian relation from the general kinetic 
equation (5), we need to relate the specific entropy s~ to the distribution 
function .f~. For dilute systems, and based on the Boltzmann statistics, s~ 
is defined to be (1,14,15) 

p m =  - k ff~(lnf~ - 1) dg~ (6) 

where k is the Boltzmann constant and pi the density of the ith species. For 
dense systems, the mutual potential of the particles will contribute to s~ ; 
binary or multiparticle distribution functions will appear in the integral of 
Eq. (6). Then, the analysis becomes very complicated; in fact, the existing 
analytical derivation (l-a) is also based on Eq. (6) and is therefore also 
restricted to dilute systems. 

By a dilute system, we mean that the particles do not interact with each 
other except during collisions; the mutal potential of the particles is important 
only during the time periods of these collisions; the latter periods are much 
shorter than the time between collisions. However, these collisions can be 
inelastic and multibody. These collisions are of prime importance in chemical 
reactions occurring within a dilute system, where several particles may come 
together and participate in a multibody inelastic collision resulting in a 
chemical reaction. Hence, such collisions should be included in any thermo- 
dynamic treatment of dilute systems. In our case, this is achieved through the 
general kinetic equation (5). 

Since we shall analyze dilute systems with negligible internal degrees 
of freedom, the species temperatures T~ will be defined as the species kinetic 
temperatures (dc~ = dc~ dci~ dc~) 

~kTi = n~ .1 f -1-rnc2 i jilt dei 

= (�89 2) (7) 

which also defines the notation < }. The number density n~ and the peculiar 
velocity e~ of the ith species are defined by 

-- f f~  dc,: (8a) ni  

and 

ei = ~i -- u (8b) 
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The fluid velocity u, density p, and temperature T are then defined by 

u ~ p - i  ~ piui 
i 

where 

where 

and 

where 

(9a) 

ui = (gl} (9b) 

P = Z Pi (9c) 
i 

Pi = n imi  (9d) 

T = n -1 ~ niT~ (%) 

n = • ni (9f) 
i 

From our analysis presented below, it is clear that the restriction on the 
internal degrees of freedom can be relaxed; we can study systems with highly 
nonequilibrium internal degrees of freedom, for example, if different species 
have different vibrational, rotational, and translational temperatures. A 
simpler case, where these three temperatures are different from each other 
for each species, but are the same for all species, has been analyzed by Reik. (4) 

In Section 2, we also obtain for our highly nonequilibrium systems the 
First Law statement and its entropy production rate; the latter specifies the 
generalized forces and fluxes with the help of a fundamental axiom to be 
postulated. The Second Law is then postulated in the form that the entropy 
production rate is always nonnegative. Specific systems and specific kinetic 
equations are studied. For each case, we obtain linear or nonlinear relations 
between the generalized forces and fluxes, and also an analytical proof of the 
Second Law statement. Thus, we are provided with some analytical basis 
for postulating that the Second Law is valid in general. Some discussion 
regarding Onsager's reciprocity relations will be presented. Some interesting 
relations linking the generalized forces to the fluxes will also be obtained, 
when there are arbitrary inelastic collisions and chemical reactions. 

2. A N A L Y S I S  

We shall study a simple class of Type I highly nonequilibrium dilute 
systems which has been specified in Section 1. Hence, we shall allow the 
species temperatures Ti to vary greatly from one species to another, while 
the small deviations r can still assume arbitrary forms. 
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If  the Ti become close to each other, then our highly nonequilibrium 
dilute system become the usual nonequilibrium dilute system; the latter is 
the system studied in the existing analytical derivations a-5) of the Gibbsian 
relation (1). We have also emphasized in Section 1 that these existing 
derivations are restricted to binary and elastic collisions since they are based 
on the Boltzmann equation 

~f~ = 2. f f ( f~"  -- f~.~.)gb db de dgj (10) 
3 

It seems that one cannot remove the dependence on the Boltzmann collision 
integrals from these derivations, due to the amount of complexities involved. 
This kind of attitude may be unwarranted. Moreover, since the Gibbsian 
relation is a thermodynamic one, we should raise the question of why we 
cannot completely remove such dependence and obtain a derivation that is 
both analytical and thermodynamic. We shall demonstrate that this aim 
can be achieved. Indeed, we shall work directly with our highly nonequi- 
librium systems with multiple species temperatures; once we can generalize 
the Gibbsian relation (1) for such systems based on the general kinetic 
equation (5), the desired derivation of the Gibbsian relation (1) itself will 
readily follow. 

Apart from the fact that we shall deal with multiple species temperatures, 
the details of our analysis will be similar to those of the existing analyses. (1-~) 
We should point out that in the latter analyses (see Ref. 1, p. 177), the small 
deviation ~ is further divided into various orders q~z~, ~b~2), etc.; these also 
define the different orders of their analyses. Moreover, ~ )  is linear in the 
spatial gradients, but otherwise arbitrary in form. We shall retain q;~ as a 
whole in our analysis without any subdivision; hence our ~ should also be 
arbitrary in form. Moreover, the different orders of our analysis will corres- 
pond to the different powers of q~ ; in other words, those terms scaled by 
~ will be called ruth order terms. 

Also, we shall adopt the following expansions: 

f~ =f~(~ 1 ~- q~i) with [q~ ] < 1 ( l la)  

f'~(lnf~ - 1) = --f~: (o) + ~ lnf~ <o) _}_ f~ (o/,k Zg~(q~ 3 ( l ab)  

with 

lnf~ = lnf~ ~~ + $~ - 4792($,) 

co 

gl(~i) = ~ [(--1)W(m + 1)(m + 2)1 ~i~'~ 
q'~=0 

(11c) 

(1 ld) 
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g2(41) = ~ [(--1)m/( FFI -~- 2)] 41 m ( l l e )  
~ o  

Equations (l lb) and (1 lc) represent new groupings of terms, different from 
the usual grouping; the latter is illustrated by Eqs. (68)-(70), p. 178 of Ref. 1. 

Since we allow multiple species temperatures, i.e., T~ 4 = T, but nearly 
the same species velocities, i.e., u~ ~ u, the locally Maxwellian zeroth-order 
distribution function of the ith species should be based on T~ and u. Thus 

where 

A (~ = exp(mi /kT~)[r  - -  �89 - -  u)21 

F~i = (kT i /mi ) [ ln  ni - -  ~ l n ( 2 ~ k  Ti /mi) l  

(12a) 

(12b) 

and 

(O/#t)(~n~kT~ + n~b~) 

@ V .  (~nikTiu  -~ ni4Jiu) 

"~ DiWi " [ (Du/Dt)  - -  (Fi/mi)] -~ V " (qi -~- niwi~i)  

+ pi  V �9 u -~- P~ : Vu 

W i = U i - - U  

D / D t  = e/~t  -1- u �9 V 

P i  -~" n i k T i  = n~( �89  ~) 

Pi = ni(rnieiet)  - -  Pi I 

qi = n i (  �89 (14e) 

These equations have given us, with the help of the unit tensor I, the defi- 
nitions of the diffusion velocity w~, the partial pressure p~, the stress tensor 
P~ and the heat flux vector q~, for the ith species. 

(13) 

04a) 

04b) 

04c) 

(14d) 

where 

which will be shown as a part of the usual chemical potential/xi �9 
Now, each particle of the ith species may also have a chemical energy 

~b~, such as the heat of formation or the ionization potential. To consider the 
energy balance for each species, we take the �89 ~ + 4~ moment of the general 
kinetic equation (5) and obtain 
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The body force Fi appearing in Eq. (13) is defined by Fi = ( ~ i )  where 
o~i appeared in Eq. (5). The usual assumption that ~ i  is independent of 
r162 has been made in Eq. (13). I f f f i  does depend on gi, such as the Lorentzian 
or the nonconservative forces, then in Eq. (13), the term containing Fi should 
be written as the sum of two integrals, 

and 

f (�89 ~ + ~b i /mi ) (~ /~g i )A  dgi 

Notice that the same remark also applies to the corresponding terms of 
Eqs. (16a) and (16d); on the other hand, only the first integral is needed for 
Eqs. (22), (25), and (27). For Eq. (17), we need to add only 

- - (k /m3 fA(lnA -- 1)(c2~-Jo;~) d~r 

and, for Eqs. (23), (24), and (34), a sum of all three integrals, withf~ changed 
to f(0) in the first integral, which is frequently the only nonvanishing a i  

contribution. 
Next, we take the species mass moment and obtain the species continuity 

equation as 

3pi/~t + v .  (piui) = f m ~ i  dci (15a) 

o r  

p Dxi/Dt = --V �9 (piwi) + f /77i~ i del 

where xl is the concentration of the ith species, 

xi = m/P 

From these, we obtain for the mean fluid 

p(D/Dt)(1/p) = V " u 

and, for any property Qi of the ith species, 

(a/~t)(pQ~) + v . (piQiu) = p(D/Dt)(xiQi) 

Thus, 
Eqs. (13), 

(15b) 

(15c) 

(15d) 

(15e) 

a First Law statement for each species follows directly from 
(15d), and (15e). It reads, by employing the specific internal 
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energies E i = ( ~ k T  i 4- ~i)/m, and by emphasizing that the total energy of 
each species is not necessarily conserved, 

--(l/p) V" qi = (D/Dt) xiei q- pi(D/Dt)(xl/pi) 4- (l/p) V.  (niw~b~) 

+( l /p )  Pi : Vu 4- x~wi" [(Du/Dt) -- (FJmi)] 

- -  (l/p) f (�89 2 4- r cg~ dei (16a) 

For the mean fluid, the total energy is conserved when we consider all elastic 
and inelastic collisions; thus, 

Z f(�89 @i) C~idei=O (16b) 

Also, 

D i W i  ----" 0 (16c) 
i 

Hence, the First Law states for the mean fluid, 

--(l/p) V.  (q 4- ~ niwi~i) 
i 

= (De/nt)  4- p(D/Dt)(1/p) 4- (l/p) P : Vu -- ~ (xi/mi) w~" Fi 
i (16d) 

Here, E = ~ i  x~Ei and p, P, and q equal, respectively, to the sums of p~, 
P~ and q~. When the chemical energy r is neglected, then Eq. (16d) reduces 
to the First Law statement of Ref. 1 [see their Eq. (36), p. 18]. 

Now, the specific entropy s~ of our dilute system has been defined in 
Eq. (6). Combining with the general kinetic equation (5) yields the entropy 
balance equation: 

(~/~t) p~si =- - - V  �9 ( D i s i l i  i @- J~) + c~ (17) 

with 

and 

J~ = --k  f e~fdlnfi -- 1) dci (17a) 

- -k  f cgi lnfz dc~ (17b) o" i 

representing, respectively, the entropy flow vector and the entropy production 
rate per unit volume due to the ith species. 

By adopting the expansions (11) and the definitions (12), we find that 

a~i : -  [(q~ -- piwi~,)/T~] 4- 8J~i. (18) 
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with 

and 

where 

~Jsi = - -k  f C i ~ i 2 g l ( ~ i ) f i  (0) de i 

a~ = (I/T0 f (�89 ~ -- mif~ -- k T ~ )  ~i  dci + ~Wi (19) 

We proceed to show that when Eqs. (13) and (17) are combined with the help 
of (18) and (19), all terms involving the arbitrary collision integrals will 
vanish in the first order. First, Eq. (15b) leads to 

--(1/T 0 f m~/~c~, dc~ 

= -- (~i/Ti) p(Dxi/Dt) -- V" (Diwit~i/Ti) (20) 

q- (p,w, �9 Vl~i)/T i @ pifz,w, �9 V (1/Ti) 

where/z~ =/2~ q- ~b~/m~ is the usual chemical potential, which can be used 
to define the free energy and the chemical affinity. Next, f~0) demands, upon 
invoking the definitions of (12) and (14), that 

f de, = 0 

f mici(f~.(~ dci = piwl 

f lmiCi2(fi(~ dei : 0 (21) 

f mieiei(fi(~ dei = Pi 

f lmici2ci(fi(~ dci : qi 

Consequently, utilizing the operator ~ of Eq. (5) and the definition (lla), 
we get 

kT  i f (~i~f/(o) dci = p i w i  �9 [(Du/Dt) -- (Fi/mi) -~- Vfz i -- (fzi/T,) VTi] 

-~- T~lqi " VTi @ Pi  : 1711 (22a) 

and 

kTi f r = kTi f A ~f(~ dei--  'Ji (22b) 
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where 

~ = - k  f ~,~(A(~ dc~ 

- -  k f [4i/(1 q- 4~)](4~ga~ -}-, f~(~ dc~ (22c) 

Summarizing and combining Eqs. (13) and (17) with (18)-(22) yield, 
upon invoking Eq. (15e), 

Ti(D/Dt) x,& = (DID 0 x~ei ~- pi(D/Dt)(x~/pt) -- tzi(Dx,/Dt) 

-k (Tdo)[--V �9 3J~ § 3Wi q- 32ad (23) 

which is our desired entropy equation. It clearly shows that all terms involving 
the arbitrary collision integrals cg~ have cancelled out each other in the first 
order; every term inside the bracket is connected with the ~2 or higher-order 
terms in our expansion. 

For the mean fluid, Eq. (23) gives the following entropy equation, up 
to the first order, 

Tr xisi = (De~DO ~- p(D/Dt)(1/p) -- ~ tzi Dxi/Dt (24) 
i i 

Equation (24) is a desired extension of the Gibbsian relation (1). We have 
analytically derived this extension, based on the general kinetic equation (5) 
and for our highly nonequilibrium multispecies systems specified in Section 1. 

When the systems become nonequilibrium, such that the species 
temperatures Ti become close to each other, then Eq. (24) reduces to Eq. (1). 
In this way, we have obtained the desired analytical derivation of the Gibbsian 
relation (1) from the general kinetic equation (5). We emphasize again that 
only such a derivation can qualify as a thermodynamic derivation, as we 
have discussed in Section 1. 

3. E N T R O P Y  P R O D U C T I O N  RATE;  R E L A T I O N  B E T W E E N  
G E N E R A L I Z E D  FORCES A N D  G E N E R A L I Z E D  F L U X E S  

Returning to our highly nonequilibrium systems, we obtain the desired 
expression for the entropy production rate by combining Eq. (19) with (20) 
and (21) to yield 

~ = (1/T~)[Y(Ei) --/&J-(mi)] -- (1/T~) w~" (d~ -- p~p-z V" P) 

" q~* �9 V(1/T~) -- (1/T~) Pi : Vu (25) 

where 
d~ = vp~ --  p~p-lVp -- pi(F~/mi) + p~p-~ Y (psFdm3 

J 

q~* : qi ---~ (kTi/mi) piwi 
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and 

,9"-(Ei) = f lmici2C~i dei (25a) 

Y(m~) ~- f rniT~ dei (25b) 

Eqs. (25a) and (25b) define, respectively, the net rate of gain or loss of the 
energy and the mass of the ith species by collisions; P is the negative of the 
usual viscous shear stress, and d~ is the driving force for diffusion, used in 
Ref. 16 but differing by a factor p, since T~ = T in Ref. 16. Notice that in 
deriving Eq. (25), we have utilized the equation of motion for the mean fluid, 
which reads 

p Ou/Ot -~ --Vp -- V" P -t- ~ pjF/mj (26) 
J 

By virtue of Eq. (25), the local entropy production rate per unit volume 
of our highly nonequilibrium system is given by 

i 

= Z (1 /T3[Y( ,~)  - m g - ( m 3 ]  
i 

- - Z  (1/Tl) wi " (di -- pip-iV " P) 
i 

-{- Z qi*" V(1/Ti) -- Z (1/Ti)Pi : Vu (27) 
i i 

With the help of Eq. (16b) and definitions (25a) and (25b), Eq. (27) will 
reduce to the usual form [see, for example, Eq. (21), p. 24 of Ref. 1] when the 
system becomes simply nonequilibrium with the Tr nearly equal to each 
other. 

Here, we want to emphasize that in inelastic collisions, particles can be 
liberated or absorbed, and radiation and transfer of energies can also be 
involved. Hence, we no longer can guarantee the time-reversal invariance 
or the microscopic reversibility from the particle equations of motion. These 
equations of motion may now include nonconservative forces (Ref. 17, 
pp. 70-72), and may depend on the past history of the particles and the 
energies involved in the collisions. They may become integrodifferential 
equations, lose the simple uniqueness property of the usual first-order 
differential equations, and fail to establish the microscopic reversibility. 
The latter property is essential (Ref. 1, p. 186) for deriving Onsager's reci- 
procity relations from the Bottzmann kinetic equation, and possibly, also 
from other kinetic equations. 
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Next, we want to utilize Eqs. (25) and (27) to achieve two aims: (A) we 
want to establish some analytical basis upon which we can postulate the 
general validity of the Second Law statement in the form that 

>~ 0 (28) 

and (B) we want to establish relations (33), to be presented later, which will 
link the generalized forces to the generalized fluxes of our highly nonequi- 
librium systems specified in Section 1. 

Here, we want to point out that our highly nonequilibrium systems are 
nearly locally isotropic in their center-of-mass reference frame, i.e., as viewed 
by an observer traveling with the local fluid-mean velocity u. This is the case 
because any nearly Maxwellian distribution function f i  is nearly isotropic 
in the velocity space, and, all of  ourf~ are nearly centered at the fluid-mean 
velocity u, as evidenced by definitions (12). 

This locally isotropic property will be emphasized in our study of both 
Case B and Case G defined below. In both cases, we shall be concerned with 
our highly nonequilibrium systems, but we shall distinguish the two cases by 
admitting different kinds of collisions among the particles of our systems: 

Case G: based on the general kinetic equation (5), i.e., admitting 
arbitrary collisions. 

Case B: based on the Boltzmann equation, i.e., restricted to binary and 
elastic collisions. 

Let us first study Case B with the aid of the results of Burgers, (la) 
Hirshfelder et al., (16) Chapman and Cowling, (m and Yen. (1~ From the results 
of Burgers, (13) the stress and the heat flux equations can be written as 

(Ai~-ei + ~iijej) : pi{Vu} 
J 

4- [(D/Dt) P~ 4- P~V- u 4- V .  ((pieie, ei} -- ~qiI) 

4- {Pi" Vu} 4- pi{wi Du/Dt} - -  N~(eio~}] (29a) 

where 

and 

[ab}  : ab  4-  b a  - -  ~a  �9 b I  

[Bijqi* + ~i~qj* + Cij(wi - -  wj)] 
J 

= ~p~pT~(d, - -  r a p - i v  �9 P )  + -~(n~k~Tdm3 VT~ 

+{(D/Dt)  q~ + q~V. u + q," Vu + P~" [(Du/Dt) - -  (Fi/rn~)] 

4-(picieiei} : Vu -- n i ( (~ i  - - F i )  ' (e/c/-t- �89 (29b) 
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Equation (29b) is the heat flux equation in its complete form; Burgers has 
subtracted from this equation terms equal to ~P~/pi times the species 
momentum equation. Here, A~j, ~ ,  etc. represent different coefficients 
given by Burgers. The terms inside the curly brackets are negligible, because 
they involve second-order quantities, tz3) We proceed to prove the Second Law 
statement (28) for Case B. 

Equation (29b) can be solved algebraically to yield the linear relations 
for Case B, up to the first order, 

and 

w~ = --~(1/T0[d~ -- (pi/P) v .  P] + ~, o~ij V(1/Tj) (30a) 
J 

qi* = ~ flij(1/T~-)[dj -- (pj/p) V .  P] + f l iV(1/Ti) (30b) 
J 

They are identical to Eqs. (8.5-7) and (4.41-3) of Ref. 16 for the simpler 
case of binary mixtures with d12 = dl -- dz and T1 = T 2 . In this simpler 
case, the terms involving x7 �9 p should be dropped from Eqs. (30a) and (30b) 
since they will disappear from Eq. (25); these terms have been anticipated for 
Case B in general, by Eq. (7.5-12) of Ref. 16. Next, from other numerical 
results of Refs. 11 and 13, we also establish that ~i and fi~ are nonnegative, 
and that for case B, 

~i~ = fi~i (31) 

which represents a reciprocity relation of Onsager. m Moreover, from the 
results of Burgers (~) and Yen, t~~ the species energy moment yields, for 
case B, 

~--(e~) = ~ y~j[(1/T~) -- (1/Tj)] (32) 
J 

where ~is is always nonnegative and has been given by Burgers and Yen. 
This relation is compatible with Eq. (27) and the fundamental axiom to be 
stated later. 

Combining Eqs. (29) and (30)-(32) with Eq. (27) yields an analytical 
proof of the Second Law statement (28) for Case B. It is clear that the same 
proof works also if Case B is further restricted such that the system becomes 
simply nonequilibrium, or if the system contains only a simple species. 
Consequently, we are provided with some analytical basis for postulating 
that the Second Law is valid in general. We remark that this procedure does 
not yield a definitive statement on ~ for each species. 

Summarizing, the above results exhibited as Eqs. (29), (30a), (30b), and 
(32) indicate that for Case B, each generalized flux does not depend on all 
of the generalized forces, and, moreover, is related only to those forces of 
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the same tensorial rank as the flux in question. This is precisely the statement 
of Curie's principle (Ref. 1, p. 33), which is usually postulated to be valid for 
isotropic systems. The above results prove that the Curie's principle is indeed 
valid for the nearly locally isotropic and highly nonequilibrium systems of 
our Case B. Hence, we can set forth a fundamental axiom in order to study 
more general cases such as Case G. 

Fundamental Axiom: The entropy production rate cr defined by Eq. (17b) 
specifies the generalized forces and the generalized fluxes by admitting only 
scalar products, linear or nonlinear, of these forces with these fluxes. I f  the 
system under consideration is nearly locally isotropic, then Curie's principle 
will be valid; otherwise, nonlinear relations linking these forces to these 
fluxes will be determined through specific collision integrals. 

Let us study Case G. In contrast to Case B, no such detailed result 
is available for Case G. We have to rely on the Fundamental Axiom, which, 
when applied to Eq. (27), implies that for Case G 

J ( e i )  = ~ c~-j[(1/Tg) --  (1/Tj)] + /zJ'(m~) (33a) 
J 

wi = ~/3~5(1/Tj)[dj -- (p/p) v .  PI + ~/~SV(1/Tj) (33b) 
J J 

' "V q~* = ~ ~,~j(1/Tj)[dj -- (p/p) V" P] + ~ ~,~j (1/Tj) (33c) 
J 

Pi = ~ S~-pi{Vu} (33d) 
J 

where ~ ,  ~ ,  ~j, etc. denote unknown coefficients. 
Equation (33a) displays an interesting result: The net rate of energy gain 

or loss by the ith species due to all elastic and inelastic collisions is propor- 
tional to the inverse temperature differences (1/T~) -- (1/Tj), and, includes the 
net rate of change in the chemical potential by the liberation or absorption 
of/-type particles during inelastic collisions. So far in the literature, Eq. (33a) 
has not been derived for Case G from a thermodynamic consideration, 
although it can be deduced from a postulated model, (zS) and it has been used 
in many analyses. 

If  both Ti v a T and u~ v a u for all species of our system, then the above- 
mentioned isotropy within the center-of-mass reference frame is destroyed. 
Nonlinear relations will be needed to correlate the generalized forces and 
fluxes. A new entropy equation as another extention of the Gibbsian relation 
will be derived. These will be presented in a subsequent paper. 
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4. A R B I T R A R Y  Z E R O T H - O R D E R  D I S T R I B U T I O N  F U N C T I O N S  

General expressions will be obtained in this section based on entirely 
arbitrary zeroth-order distribution functions which can be isotropic or 
nonisotropic. We start from the general definitions (2), (7)-(9), and (14). In 
other words, we define the pressure p~ as one-third of the trace of its pressure 
tensor. Pi or T~ will denote the averages of  the "parallel" and the 
"perpendicular" pressures or temperatures i f f~ ~ is nonisotropic. 

We now extend Maxwell's iteration C2~ as substantiated by Ikenberry 
and Truesdell ~21) to multispecies systems by assuming that the diffusional 
effects do not appear at the zeroth order, i.e., 

f - u)f/(~ = 0 

Otherwise, p~ is still considered as of zeroth order while Pi and qi are still 
higher-order quantities. These considerations directly establish Eqs. (21) 
independently off~ ~ Now, the distribution functions f~  ~ for species at their 
local thermodynamic equilibrium are well-established from statistical 
machanics: (We use the superscript "e" to denote "locally thermodynamic 
equilibrium states"): 

f i(e) - ~(e) �9 = [exp(mi/kT)][t~i --  �89 --  u) 2] 

with 

~ )  = (kT/m~)[ln n~ - ~ln(2r&T/m~)] 

= - ( r  

Following the analysis of  Section 2, we obtain the general entropy equation 
for each species 

r i (D /Dt )  xisi = (D/Dt)  xie~ + pi (D/Dt) (x i /p i )  - -  t ~ ) ( D x i / D t )  

+ ( k T / p )  V . f (g~ --  u)j~ ln(fi(~ (~)) d~, 

--  (kT/p)  f r  ~ ln(f/(o~f/(~)) d e  i 

- - ( kT /p )  f ln(j~(~ c#~ dg~ 

+ ( T / p ) ( - - V .  ~J,~ + 31cr ~ + 3~ar (34) 

The last line involves three higher-order terms which have been defined in 
Eqs. (18), (19), and (22). Equation (34) reduces to Eq. (23) when Eqs. (12) 
are employed to define f~0). The summation of Eq. (34) over all species 
gives another analytical extension of the Gibbsian relation (1). 

82z/51z12-2 
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